Wednesday, December 29, 2010

Contract Marks New Generation for Deep Space Network

The Canberra Deep Space Communications Complex, located outside Canberra, Australia.
The Canberra Deep Space Communications Complex, located outside Canberra, Australia, is one of three complexes, which comprise NASA's Deep Space Network. In this image, the 70-meter (230-foot) antenna and the 34-meter (112-foot) antennas are working side-by-side. › Larger image
NASA has taken the next step toward a new generation of Deep Space Network antennas. A $40.7 million contract with General Dynamics SATCOM Technologies, San Jose, Calif., covers implementation of two additional 34-meter (112-foot) antennas at Canberra, Australia. This is part of Phase I of a plan to eventually retire the network's aging 70-meter-wide (230-foot-wide) antennas.

The Deep Space Network (DSN) consists of three communications complexes: in Goldstone, Calif.; Madrid, Spain; and Canberra, Australia. The 70-meter antennas are more than 40 years old and are showing signs of surface deterioration from constant use. Additional 34-meter antennas are being installed in Canberra in the first phase; subsequent phases will install additional 34-meter antennas in Goldstone and Madrid.

The 34-meter beam waveguide antennas are essential to keep communications flowing smoothly as NASA's fleet of spacecraft continues to expand. In addition, the waveguide design of the antennas provides easier access for maintenance and future upgrades, because sensitive electronics are housed in a below-the-ground pedestal equipment room, instead of in the center of the dish.

"As a result of several studies, it was determined that arrays of 34-meter beam waveguide antennas were the best solution to long-term continuation of DSN 70-meter capabilities," said Miguel Marina, who manages the 70-meter replacement task force at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "The new antennas are critical communication resources for all current and future NASA missions."

NASA expects to complete the building of the first two 34-meter antennas in Canberra by 2016. They will be named Deep Space Stations 35 and 36. Deep Space Station 35 is due to be online in 2014, and Deep Space Station 36 is expected to follow in 2016.

In 1958, NASA established the Deep Space Network as a separately managed and operated communications facility to accommodate all deep space missions. This avoided the need for each flight project to acquire its own specialized space communications network. During the Apollo period (1967-1972), these stations supported America's missions to the moon, including the historic first manned landing. The Goldstone antenna, in particular, captured Neil Armstrong's words and sent them on to American television sets while the images came through another antenna.

The Deep Space Network is now sending commands to numerous robotic spacecraft, such as NASA's Mars Exploration Rovers, the Spitzer Space Telescope, the Saturn explorer Cassini and the two Voyager spacecraft, which are near the edge of the solar system.

JPL, a division of the California Institute of Technology in Pasadena, manages the Deep Space Network for NASA Headquarters, Washington. More information about the Deep Space Network is online at: http://deepspace.jpl.nasa.gov . More information about NASA's Space Communications and Navigation program is at: https://www.spacecomm.nasa.gov .

Wednesday, December 22, 2010

Season's Greetings: NASA Views the Change of Seasons

The change of seasons is vividly displayed in four satellite images of Lake George, New York
The change of seasons is vividly displayed in four satellite images of Lake George, New York, from the Advanced Spaceborne Thermal Emission and Reflection Radiometer instrument on NASA's Terra spacecraft. › Larger image
The change of seasons on Earth has been a cause for celebration since time immemorial. Caused by the tilt of Earth's axis relative to its orbital plane around the sun, seasons have profound changes on our weather and climate. When seasons change, nature reacts differently, depending on location. Temperatures change, rain or snow falls, rivers may flood, to name just a few effects.

From space, NASA satellites record the change of seasons. Satellite images show large parts of the landscape at one time. They help scientists study regional patterns on Earth. These images also help show bigger changes that may occur over many years.

A new slide show, "The Change of Seasons: Views from Space," shows some of the ways seasonal change affects our planet, and invites you to share your own photos of seasonal change where you live: http://www.jpl.nasa.gov/education/seasons.cfm .

Monday, December 13, 2010

Students Bounce to the Top at JPL Competition

Students from Magnolia Science Academy
Students from Magnolia Science Academy, Carson, Calif., hold their first place trophy with mentor Yunis Karaca (bottom right, wearing green).
Magnolia Science Academy, Carson, Calif., led by mentor Yunis Karaca and student captain Robert Butler, picked up top honors at the annual Invention Challenge, held today, Dec. 10, at JPL. The winning device was appropriately named "Catapult. "

The event drew more than 260 students and teachers representing 16 schools from throughout Southern California. This year's challenge was to build a unique device capable of lifting an officially supplied ping-pong ball and cause the ball to touch and hold against a ceiling located 2 meters (about 6.6 feet) above ground. The winner completed this task in the fastest time.

A total of 19 student teams competed side-by-side with 15 teams that included JPL engineers. There was a tie for the winning JPL team between P.C. Chen and David Van Buren, while second place went to Richard Goldstein and third place to Bob Krylo.

The requirements this year: The devices had to be initiated by a single operation (cut a string, flick a switch, etc.), use safe energy sources, and could be no larger, prior to the start of the task than 50 centimeters (19.7 inches) high by 1.2 meters (about 3.9 feet) wide by 1.2 meters (about 3.9 feet) long. The devices had to be made from non-toxic and safe materials.

The rules change each year, but the results remain consistent: Students challenge themselves, solve problems and appreciate that math, science and engineering can be fun.

When asked for the key to their success, Yunis Karaca, the team's mentor replied, "We first brainstormed and then I let the kids use their imagination."

Monday, December 6, 2010

NASA Aids in Characterizing Super-Earth Atmosphere

Super-Earth Exposed
The planet GJ 1214b, shown here in an artist's conception with two hypothetical moons, orbits a "red dwarf" star 40 light-years from Earth. › Full image and caption
A team of astronomers, including two NASA Sagan Fellows, has made the first characterizations of a super-Earth's atmosphere, by using a ground-based telescope. A super-Earth is a planet up to three times the size of Earth and weighing up to 10 times as much. The findings, reported in the Dec. 2 issue of the journal Nature, are a significant milestone toward eventually being able to probe the atmospheres of Earth-like planets for signs of life.

The team determined the planet, GJ 1214b, is either blanketed with a thin layer of water steam or surrounded by a thick layer of high clouds. If the former, the planet itself would have an icy composition. If the latter, the planet would be rocky or similar to the composition of Neptune, though much smaller.

"This is the first super-Earth known to have an atmosphere," said Jacob Bean, a NASA Sagan Fellow and astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But even with these new measurements, we can't say yet what that atmosphere is made of. This world is being very shy and veiling its true nature from us."

GJ 1214b, first discovered in December 2009, is 2.7 times the size of Earth and 6.5 times as massive. Previous observations of the planet's size and mass demonstrated it has a low density for its size, leading astronomers to conclude the planet is some kind of solid body with an atmosphere.

The planet orbits close to its dim star, at a distance of 0.014 astronomical units. An astronomical unit is the distance between Earth and the sun, approximately 93 million miles. GJ 1214b circles too close to its star to be habitable by any life forms.

Bean and his team observed infrared light as the planet crossed in front of its star. During such transits, the star's light filters through the atmosphere. Gases absorb the starlight at particular wavelengths, leaving behind chemical fingerprints detectable from Earth. This same type of technique has been used to study the atmospheres of distant "hot Jupiters," or Jupiter-like planets orbiting close to their stars, and found gases like hydrogen, methane and sodium vapor.

In the case of the super-Earth, no chemical fingerprints were detected; however, this doesn't mean there are no chemicals present. Instead, this information ruled out some possibilities for GJ 1214b's atmosphere, and narrowed the scope to either an atmosphere of water steam or high clouds. Astronomers believe it's more likely the atmosphere is too thin around the planet to let enough light filter through and reveal chemical fingerprints.

"A steamy atmosphere would have to be very dense – about one-fifth water vapor by volume -- compared to our Earth, with an atmosphere that's four-fifths nitrogen and one-fifth oxygen with only a touch of water vapor," Bean said. "During the next year, we should have some solid answers about what this planet is truly like."

The team, which included Bean's co-authors -- Eliza Miller-Ricci Kempton, a NASA Sagan Fellow at the University of California in Santa Cruz, and Derek Homeier of the Institute for Astrophysics in Gottingen, Germany -- examined GJ 1214b using the ground-based Very Large Telescope at Paranal Observatory in Chile.

"This is an important step forward, narrowing our understanding of the atmosphere of this planet," said NASA Exoplanet Exploration Program Scientist Douglas Hudgins at NASA Headquarters in Washington. "Bizarre worlds like this make exoplanet science one of the most compelling areas in astrophysics today."

The Sagan Fellowship Program is administered by the NASA Exoplanet Science Institute at the California Institute of Technology in Pasadena. Its purpose is to advance the scientific and technical goals of NASA's Exoplanet Exploration Program. The program is managed for NASA by the Jet Propulsion Laboratory in Pasadena, Calif. Caltech manages JPL for NASA.

More information about NASA's planet-finding missions is online at:http://planetquest.jpl.nasa.gov . More information about NASA's Sagan Fellowship Program is at http://nexsci.caltech.edu/sagan .

Wednesday, December 1, 2010

Spain Supplies Weather Station for Next Mars Rover

Weather Sensors from Spain on Mars Rover Curiosity
Sensors on two finger-like mini-booms extending horizontally from the mast of NASA's Mars rover Curiosity will monitor wind speed, wind direction and air temperature. › Larger image

The first instrument from Spain for a mission to Mars will provide daily weather reports from the Red Planet. Expect extremes.

Major goals for NASA's Mars Science Laboratory include assessing the modern environment in its landing area, as well as clues to environments billions of years ago. The environment station from Spain will fill a central role in studying modern conditions by measuring daily and seasonal changes.

The Rover Environmental Monitoring Station, or REMS, is one of 10 instruments in the mission's science payload. REMS uses sensors on the mast, on the deck and inside the body of the mission's car-size rover, Curiosity. Spain's Ministry of Science and Innovation and Spain's Center for Industrial Technology Development supplied the instrument. Components were installed on Curiosity in September and are being tested at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

While most of Curiosity's electronics are sheltered for some protection from the Martian environment, the team that developed and built the environmental station needed to fashion external sensors that could tolerate the temperature extremes that some of them would be monitoring.

"That was our biggest engineering challenge," said REMS Principal Investigator Javier Gómez-Elvira, an aeronautical engineer with the Centro de Astrobiología, Madrid, Spain. "The sensors will get very cold and go through great changes in temperature every day." The Center for Astrobiology is affiliated with the Spanish National Research Council and the National Institute for Aerospace Technology.

The air temperature around the rover mast will likely drop to about minus 130 degrees Celsius (about minus 202 degrees Fahrenheit) some winter nights and climb to about minus 50 C (about minus 60 F) by 12 hours later. On warmer days, afternoon air temperatures could reach a balmy 10 to 30 C (50 to 86 F), depending on which landing site is selected.

Other challenges have included accounting for how the rover itself perturbs air movement, and keeping the entire weather station's mass to just 1.3 kilograms (2.9 pounds).

The instrument will record wind speed, wind direction, air pressure, relative humidity, air temperature and ground temperature, plus one variable that has not been measured by any previous weather station on the surface of Mars: ultraviolet radiation. Operational plans call for taking measurements for five minutes every hour of the 23-month-long mission. Twenty-three months is equal to approximately one Martian year.

Monitoring ground temperature and ultraviolet radiation along with other weather data will contribute to understanding the Martian climate and will aid the mission's assessment of whether the current environment around the rover has conditions favorable for microbial life.

"It is important to know the temperature and humidity right at ground level," said Gómez-Elvira. Humidity at the landing sites will be extremely low, but knowing daily humidity cycles at ground level could help researchers understand the interaction of water vapor between the soil and the atmosphere. If the environment supports, or ever supported, any underground microbes, that interaction could be key.

Ultraviolet radiation can also affect habitability. For example, germ-killing ultraviolet lamps are commonly used to help maintain sterile conditions for medical and research equipment. The ultraviolet sensor Curiosity's deck measures six different wavelength bands in the ultraviolet portion of the spectrum, including wavelengths also monitored from above by NASA's Mars Reconnaissance Orbiter.

The weather station will help extend years of synergy between missions that study Mars from orbit and missions on the surface.

"We will gain information about whether local conditions are favorable for habitability, and we will also contribute to understanding the global atmosphere of Mars," said Gómez-Elvira. "The circulation models of the Mars atmosphere are based mainly on observations by orbiters. Our measurements will provide a way to verify and improve the models."

For example, significant fractions of the Martian atmosphere freeze onto the ground as a south polar carbon-dioxide ice cap during southern winter and as a north polar carbon-dioxide ice cap in northern winter, returning to the atmosphere in each hemisphere's spring. At Curiosity's landing site far from either pole, REMS will check whether seasonal patterns of changing air pressure fit the existing models for effects of the coming and going of polar carbon-dioxide ice.

The sensor for air pressure, developed for REMS by the Finnish Meteorological Institute, uses a dust-shielded opening on Curiosity's deck. The most conspicuous components of the weather station are two fingers extending horizontally from partway up the rover's remote-sensing mast. Each of these two REMS mini-booms holds three electronic sensors for detecting air movement in three dimensions. Placement of the booms at an angle of 120 degrees from each other enables calculating the velocity of wind without worrying about the main mast blocking the wind. One mini-boom also holds the humidity sensor; the other a set of directional infrared sensors for measuring ground temperature.

To develop REMS and prepare for analyzing the data it will provide, Spain has assembled a team of about 40 researchers -- engineers and scientists. The team plans to post daily Mars weather reports online.